Soil Oxidation-Reduction in Wetlands and Its Impact on Plant Functioning

نویسندگان

  • S. R. Pezeshki
  • R. D. DeLaune
چکیده

Soil flooding in wetlands is accompanied by changes in soil physical and chemical characteristics. These changes include the lowering of soil redox potential (Eh) leading to increasing demand for oxygen within the soil profile as well as production of soil phytotoxins that are by-products of soil reduction and thus, imposing potentially severe stress on plant roots. Various methods are utilized for quantifying plant responses to reducing soil conditions that include measurement of radial oxygen transport, plant enzymatic responses, and assessment of anatomical/morphological changes. However, the chemical properties and reducing nature of soil environment in which plant roots are grown, including oxygen demand, and other associated processes that occur in wetland soils, pose a challenge to evaluation and comparison of plant responses that are reported in the literature. This review emphasizes soil-plant interactions in wetlands, drawing attention to the importance of quantifying the intensity and capacity of soil reduction for proper evaluation of wetland plant responses, particularly at the process and whole-plant levels. Furthermore, while root oxygen-deficiency may partially account for plant stress responses, the importance of soil phytotoxins, produced as by-products of low soil Eh conditions, is discussed and the need for development of methods to allow differentiation of plant responses to reduced or anaerobic soil conditions vs. soil phytotoxins is emphasized.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Soil Oxidation-reduction Conditions on Internal Oxygen Transport, Root Aeration, and Growth of Wetland Plants

Characterization of hydric soils and the relationship between soil oxidation-reduction processes and wetland plant distribution are critical to the identification and delineation of wetlands and to our understanding of soil processes and plant functioning in wetland ecosystems. However, the information on the relationship between flood response of wetland plants and reducing soil conditions is ...

متن کامل

Environmental Conditions Influence the Plant Functional Diversity Effect on Potential Denitrification

Global biodiversity loss has prompted research on the relationship between species diversity and ecosystem functioning. Few studies have examined how plant diversity impacts belowground processes; even fewer have examined how varying resource levels can influence the effect of plant diversity on microbial activity. In a field experiment in a restored wetland, we examined the role of plant trait...

متن کامل

Characterization of Oxidation-reduction Processes in Constructed Wetlands for Swine Wastewater Treatment

Constructed wetlands designed and properly operated for treatment of swine wastewater may enhance oxidation -reduction processes and nutrient treatment performance. The objective of this investigation was to characterize soil wetland processes related to nitrogen (N) treatment (nitrification-denitrification) and phosphorus (P) removal using soil oxidation -reduction potential (ORP) data. We eva...

متن کامل

Biological removal of cadmium from soil by phytoremediation and its impact on growth parameters, photosynthetic pigments, phenol and malondealdehyde content in Vetiveria zizianoides.

Phytoremediation is one of the most widely used methods for removing soil contaminants. In this research, the function of Vetiveria zizianoides to remove cadmium from four different treatments with varying amounts of cadmium chloride contamination (including 0, 20, 40, and 60 mg per liter) was investigated and physiological changes caused by the accumulation of this metal in the plant were moni...

متن کامل

Groundwater-induced redox-gradients control soil properties and phosphorus availability across four headwater wetlands, New York, USA

Hydrochemical patterns across groundwater-fed wetlands, especially carbonate and redox gradients, can influence phosphorus (P) availability by controlling its distribution among different soil pools. We explored these linkages by comparing shallow (5–20 cm) soil properties along groundwater flowpaths in two rich fens, a marl fen, and a poor fen. Organic matter content, bulk density, and total e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2012